Chemotherapeutic drug transport to brain tumor.
نویسندگان
چکیده
Implantation of polymeric wafers to deliver a chemotherapeutic drug is the most popular strategy against a brain tumor, but the understanding on local drug transport to influence the treatment efficacy is often overlooked. In this work, we employ a computational fluid dynamics simulation to study the suitability of four chemotherapeutic agents from a transport perspective, which specifically are carmustine, paclitaxel, 5-fluorouracil (5-FU), and methotrexate (MTX). The study is based on the diffusion/reaction/convection model, in which Darcy's law is used to account the convective contribution of the interstitial fluid. A realistic three-dimensional (3D) tissue geometry is extracted from magnetic resonance images (MRI) of a brain tumor. Our analysis explains how the distribution of the drug in the brain tumor is sensitively coupled to its physico-chemical properties. For the postulated conditions, only paclitaxel exhibits minimal degradation within the cavity: its effective cavity concentration is at least two times higher than those of others. It also exhibits the best penetration of the remnant tumor, so that the tumor is exposed to higher effective concentration up to two orders of magnitude as compared to others. It is also found that tumor receives uneven distribution of drug concentration, in which, even paclitaxel fails to provide adequate penetration on that part of the cavity surface nearest to the ventricles. In addition, we consider antiangiogenic treatment, which has been postulated to be a way to avoid drug loss from the treatment region by convection. It is shown that convection is of only marginal importance and that renormalization has little effect.
منابع مشابه
Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors
Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...
متن کاملEffect of Chemotherapeutic Drugs on Caspase-3 Activity, as a Key Biomarker for Apoptosis in Ovarian Tumor Cell Cultured as Monolayer. A Pilot Study
We aimed to develop a cost-effective and robust method to predict drug resistance in individualpatients. Representative tissue fragments were obtained from tumors removed from femalepatients, aged 24-74 years old. The tumor tissue was taken by a histopathology’s or a surgeonunder sterile conditions. Cells obtained by enzymatic dissociation from tumor after surgery, werecultured as a monolayer f...
متن کاملEffect of Chemotherapeutic Drugs on Caspase-3 Activity, as a Key Biomarker for Apoptosis in Ovarian Tumor Cell Cultured as Monolayer. A Pilot Study
We aimed to develop a cost-effective and robust method to predict drug resistance in individualpatients. Representative tissue fragments were obtained from tumors removed from femalepatients, aged 24-74 years old. The tumor tissue was taken by a histopathology’s or a surgeonunder sterile conditions. Cells obtained by enzymatic dissociation from tumor after surgery, werecultured as a monolayer f...
متن کاملPerillyl Alcohol and Its Drug-Conjugated Derivatives as Potential Novel Methods of Treating Brain Metastases
Metastasis to the central nervous system remains difficult to treat, and such patients are faced with a dismal prognosis. The blood-brain barrier (BBB), despite being partially compromised within malignant lesions in the brain, still retains much of its barrier function and prevents most chemotherapeutic agents from effectively reaching the tumor cells. Here, we review some of the recent develo...
متن کاملNumerical modeling of nanodrug distribution in tumors with heterogeneous vasculature
The distribution and accumulation of nanoparticle dosage in a tumor are important in evaluating the effectiveness of cancer treatment. The cell survival rate can quantify the therapeutic effect, and the survival rates after multiple treatments are helpful to evaluate the efficacy of a chemotherapy plan. We developed a mathematical tumor model based on the governing equations describing the flui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 137 3 شماره
صفحات -
تاریخ انتشار 2009